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Abstract-A theoretical study of thermal dispersion in porous media is presented. The contribution of 
pore level velocity distributions on dispersion is captured in an analysis of thermal transport in a thick- 
walled tube containing a flowing fluid. It is shown that the cases of an applied steady-state temperature 
gradient and a traveling temperature wave produce different thermal dispersivities. In both cases, the 
dispersion coefficient is defined by the static thermal conductivity plus a term due to dispersive Row. The 
dispersive term is proportional to the Peclet number squared. The propo~ional~ty coefficient is shown to 
be a function of porosity, fluid and solid thermal properties, and the temperature field. Through con- 
sideration of a bundle of tubes of various radii, the contribution of heterogeneities on thermal dispersion 
is evaluated. Variations of pore diameters are shown to cause orders of magnitude increases in dispersion. 

Satisfactory comparisons of the dispersion model with published experimental data are presented. 

1. INTRDDU~TION 

KNOWLEDGE of the thermal dispersion coefficients for 
porous media saturated with flowing fluids is of fun- 
damental importance in a wide variety of engineering 
applications such as thermal oil recovery, geothermal 
energy recovery, heat transfer in packed beds, etc. 
The phenomenon of transport in porous media is 
extremely complicated due to the complex pore 
geometries. A common approach to problems regard- 
ing heat or mass transfer in porous media is to treat 
the medium as a continuum where the domain of 
interest is substantially greater than the characteristic 
pore size and grain size of the medium. Application 
of the principle of conservation of energy to a control 
volume of the pseudo-continuum yields the following 
energy equation in which radiation and viscous dis- 
sipation effects are negligible : 

where & is the thermal dispersion coefficient, or effec- 
tive thermal conductivity, and vd the Darcy velocity. 
The apparent advantage of this approach is its sim- 
plicity in that there is no need to distinguish the fluid 
phase from the solid phase in the medium. But what 
accompanies this simplification are the difficulties in 
defining & and T. The role of A,, in equation (1) is the 
same as that of thermal conductivity in the energy 
equation of a true continuum. Strictly speaking, Fou- 
rier’s law does not apply to the presumed continua of 
porous media. The thermal conductivity of a fluid or 
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a solid defined by Fourier’s law is an inherent physical 
property of the material independent of its velocity of 
motion. However, the thermal dispersion coefficient 
i, of a porous medium saturated with fluids behaves 
in quite a different manner, in that it depends on the 
velocities of the fluids within it. For this reason, 1, is 
better named a thermal dispersion coefficient than 
effective thermal conductivity. 

A considerable amount of effort has been made to 
correlate thermal dispersion coefficients with other 
properties of the porous medium. In the early 196Os, 
Kunii and Smith, along with other researchers [I- 
41, conducted extensive expe~mental investigations of 
the thermal dispersion coefficient for a one-dimen- 
sional porous rock and packed beds of unconsolidated 
sands or glass beads under steady-state fluid flow con- 
ditions. In those experiments, a heat source and a heat 
sink were placed at either end of the bed. Fluids were 
flowed through the medium in the opposite direction 
to the heat flux. Similar experiments were also per- 
formed on sandstones. Kunii and Smith found that 
the thermal dispersion coefficient increased sig- 
nificantly with mass velocity of the fluids. Other inter- 
esting work by Willhite et al. [3] showed that when 
the fluid flowed in the direction perpendicular to the 
heat flux, there was no effect of the flow velocity on 
the thermal diffusivities over the range of modified 
Reynolds number from 0 to 6.6. 

In addition to the steady-state experiments reported 
above, a number of experimental investigations under 
transient conditions have been reported [1;7]. In the 
early 1960s Green et af. [S] carried out experiments 
observing the response of packed beds to a step change 
in temperature of the fluid flowing through them. In 
similar experiments, Levee and Carbonell [7] mea- 
sured the fluid temperature and solid temperature sep- 
arately with a series of speciaily designed probes. The 

2715 



2716 Z.-G YUAN (‘f al. 

NOMENCLATURE 

a fraction of tubes with r, in the binary ?-, f average temperature of the solid phase 
bundle TW temperature along the inner wall of the 

a5 specific surface area tube 
( specific heat of the medium as a t variable of time 

continuum V average interstitial velocity of the fluid 
(‘, specific heat of the fluid phase phase 
c, specific heat of the solid phase v(r) dimensionless fluid velocity 
,f(r) density distribution function of tube (‘iI I) v d Darcy velocity 

radius of a bundle +(r) actual velocity in the fluid region 
G function defined in equation (37) I coordinate in the axial direction. 
n ratio of radii, ~JP, 
P pressure 
PCd Peclet number based on Darcy velocity, Greek symbols 

zz:,r,/a, tx<, c(, thermal diffusivity of the fluid or solid 
Yh total heat flux through a bundle phase 
Yt heat flux through the ith capillary tube B dimensionless number, see equation (32) 
qW heat flux through the inner wall of the I: small quantity defined by equation (21) 

tube i 4 thermal dispersion coefficient 
r coordinate in the radial direction E”, effective thermal conductivity 
r, radius of the outer wall of the tube model i, thermal conductivity of the fluid phase 
r, radius of the inner wall of the tube model An,, dimensionless thermal dispersion 
& cross-sectional area of a bundle coefficient 
& cross-sectional area of the ith capillary & thermal conductivity of the solid phase 

tube i coefficient of the bundle 
T temperature of the medium as a l’r density of the fluid phase 

continuum PI density of the solid phase 
Tt temperature of the fluid phase Q, porosity 
T, temperature of the solid phase (I, function of porosity defined by equation 
T,- average temperature of the fluid phase (28). 

..~ 

data obtained showed that when a temperature front 
passed through the bed, the profile of the average 
temperature of the fluid and that of the average tem- 
perature of the solid moved at the same speed. The 
tem~rature data for each phase was compared to a 
theoretical model in which the temperature at any 
point in the fluid region or solid region was decom- 
posed into an average temperature and a local devi- 
ation. Good agreement was obtained between the 
experimental data and the theoretical model. 

Other theoretical work has been presented by 
Dixon and Cresswell [S, 91, Carbonell [lo], and Zan- 
otti and Carbonell [l I-131. Dixon and Cresswell [8, 
91, by using a two-phase continuum model with a 
discretized temperature field in the radial direction 
and perturbation methods, developed approximate 
expressions predicting the effective axial and radial 
thermal conductivities and the apparent wall heat 
transfer coefficient for fluid Row through packed beds 
in heated tubes. Carbonell [IO] introduced the concept 
of a bundle of capillary tubes of variable diameters to 
expIain molecular dispersion in heterogeneous porous 
media. Zanotti and Carbonell [13], by using the 
method of moments and volume averaging, were able 
to define the thermal dispersion coefficient, expressed 

in terms of heat capacities, ffow rate, thermal con- 
ductivities, and porosity for the case of a pulse change 
in temperature. However, no theoretical model has 
been reported from which the effective thermal con- 
ductivities obtained are directly related to the thermal 
dispersion coefficient found in equation (1). 

In the present work, we start with the energy equa- 
tions for the fluid region and for the solid region 
for a single tube model, in order to derive a general 
equation to express the thermal dispersion coeficient 
in a form which applies directly to equation (I). The 
general expression is then applied to two typical cases 
to generate corresponding coefficients for each case. 
The two cases are laminar flow with a steady-state 
temperature distribution and a step-change transient 
temperature distribution. The effects of hetero- 
geneities on thermal dispersion are examined 
through the analysis of a bundle of tubes of various 
radii. Finally the theoretical expressions are compared 
to the experimental data taken from the literature. 

2. THERMAL DISPERSION COEFFICIENT FOR 

A CYLINDRICAL TUBE 

The ideal method to deal with the problems 01 
thermal transport in porous media is to separate the 
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FIG 1. The thick-walled tube model with fully developed 
laminar flow inside and insulated condition outside. 

where v(r) = 2[1- (r/r,) ‘1, while i;l and ins are the 
average temperature of fluid phase and solid phase, 
respectively, defined as 

‘W s Tf d(r*) 
problem into a fluid region and a solid region. Closure FrEO * 

r W 

(9 
of the problem is obtained with the appropriate con- 
ditions at the interface of the two regions. The geo- and 
metric complexities of the interface of real porous 
material exclude this method from practical appli- 
cations. However, for cases with simple geometry, (10) 
this method does apply and gives useful and general 
results. 

Consider a long circular tube (Fig. 1) within which 
In this particular tube model, porosity #J = ri/rz. 

fully developed laminar flow occurs. The outer surface 
If a tube with a large aspect ratio (i.e. L/r, >> 1) is 

of the tube is thermally insulated. The energy equa- 
considered as a one-dimensional continuum, equation 

tions for this tube-fluid system are 
(1) becomes 

; &Z - 
( ) 

Pfcfvd g = bfcfd +i-%‘dl - 6)1 g 

1 aTf (11) 
=__ 

tlf at 1 
0 < r < r, (2) 

where T is the average temperature obtained over a 

i a aT, a*T, 

( ) 

1 aT, 
-- r- +p=---_, r ar ar a.2 u, at 

r,<r<r,. (3) 

cross-sectional area. The average temperature T is 
defined as 

Tr PfcA~f+fp,d1-4)~s 

PfG4+P&s(1-4) 
(12) 

At the inner wall of the tube, there are two constraints 
Subtracting equation (8) from equation (1 l), we have 

Tf(x, rW, r) = T,(x, r,, r) (4) 

and ; Id~-~ff#+,(l-@$ 
[ 

1 aTf(x,r,,t) 
f 

1 aTdx,w) 

ar = ' dr . 
(5) 

An adiabatic boundary condition is applied at the 
outer wall of the tube 

G(x, rO, 0 o 
ar =’ 

By symmetry, at the centerline of the tube 

In general, the bracketed term is a function of time. 
The spatial integration of the above equation leads to 

(6) the following : 

aTf(x,o,t) = o. 

Ld$f4g -l,(l-+)$ 

ar 
(7) 

The fully developed velocity profile for laminar flow 
can be expressed as r+(r) = 2V[l- (r/rw)*], where V 

-Wfed[T-~~v(r)Trd(~)]=H(f). 

is the average velocity of the fluid inside the tube. Physically the term H(t) represents the discrepancy in 
Multiplying equations (2) and (3) by 2nr, inte- the heat flux of the one- and two-equation models. 

grating with respect to r from 0 to r, and from r, to However, we require the heat flux through the two 
r,, respectively, and then adding the two resultant models to be the same. Thus, we set H(t) = 0 and then 
equations while invoking equations (4)-(7) we have solve for the thermal dispersion coefficient 1, as 
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It can be seen that once the functions T,(x. r. t) and 

T,(s, r, t) in equations (2) and (3) are given, we may 
substitute them into equations (9). (IO), (12) and (13), 
and obtain I., as a function of .Y and t. Therefore, 
for each particular temperature distribution satisfying 
equations (2) and (3), there exists a corresponding 

thermal dispersion coefftcient function which can be 
used in equation (I I). When a set of boundary con- 

ditions in the x-direction is imposed, equations (2) 
and (3), subject to conditions (4).-(7), form a closed 

problem which may be solved by analytical or numeri- 
cal methods. The dispersion coefficient d, can then be 

obtained by use of equation (13). Equation (13) is 
valid under both steady-state and transient conditions 

since the transient terms of equations (2) and (3) have 
not been dropped. 

Equation (13) indicates that the thermal dispersion 

coefficient depends not only on the physical properties 
of the fluid phase and the solid phase, but also on the 

velocity field and the temperature field in these two 
phases. Therefore, we should not expect to find a 
single expression for & which applies to all flow 

regimes and temperature distributions. However, fat 
each particular case, there should be a corresponding 
solution for j.,. 

3. ASYMPTOTIC SOLUTIONS OF TWO CASES 

Our major concern in this work is the interior region 

of the porous medium. Here we assume that the pri- 
mary mechanism of thermal dispersion is enhanced 
pore-level convection due to the existence of an inter- 

stitial velocity profile. Therefore, we proceed with a 
specified pore-level velocity profile and examine vari- 
ations in the overall temperature field under given 
thermal boundary conditions. The flow inside the 
pores is considered to be fully developed. For the 
laminar flow regime, the velocity profile is then para- 
bolic The temperature distribution evolves from 
either the steady-state or unsteady-state condition. A 

packed bed with a heat source at one end and heat sink 
at the other is an example of a steady-state problem. A 
number of unsteady-state problems often encountered 
in real applications can be referred to as traveling 
front problems in which there exists a step change in 
the inlet temperature of the flowing fluid. As the fluid 
passes through the medium, the temperature front 
smears out along the flow direction because of the 
combined effects of molecular diffusion and hydraulic 
dispersion. Thus, the two typical cases of interest are : 
laminar flow with steady-state temperature dis- 
tribution and laminar flow with traveling-front tem- 

perature distribution. In what follows, we will derive 
the asymptotic solutions for these two cases where the 
aspect ratio of the tube is large. 

3. I. Laminur ,ffow with .rteady-stutc temperuturc 

distribution 

In most applications, the dimensions of the region 

of interest are much larger than those of the pores or 
grains of the medium so that a tube model with a !arge 
aspect ratio can be used to simulate the medium. WC 

are interested in thermal dispersion in the intcriot 
region where the end effects resulting from the 
imposed conditions of uniform temperatures at both 
ends are not important. Equations (2) and (3), subject 

to equations (4)-(7) with the additional isothermal 
conditions at two ends, were first solved by numerical 
methods. The numerical solutions indicate that when 

the aspect ratio of the tube is large. the temperature 
distributions in the fluid and solid arc linear in the .\-- 

direction in the middle portion of the tube. i.c. 

i 14) 

Substituting equation (14) and the parabolic vel- 
ocity profile into equation (I 3) yields 

It can be seen that the first two terms on the right- 

hand side of equation (15) are exactly equal to the 
static effective thermal conductivity of the tube-fluid 
system which can be viewed as an example of a parallel 
model of porous media. The third term of equation 

(15) is the dispersive contribution of the pore level 
fluid velocity distribution. Denoting the static con- 
ductivity by A,, i.e. 

A, = 4;_, + ( 1 - $)j.< (16) 

and detining the Peclet number, I’,.,,. in the following 
manner 

the dimensionless thermal dispersion coefficient i.,,,,. 
defined as i,,/i.,, can be expressed as 

Li = I 

dx 

The second term on the right-hand side of equation 
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(I 8) indicates the relative increase in the thermal con- 
ductance due to the fluid velocity variations. 

In order to use equation (18), T,, T, and T from 
equations (3) and (4) are needed under the condition 
of a large aspect ratio. For steady state, equation (3) 
becomes 

(19) 

Multiplying equation (19) by 2nr and then integrating 
with respect to r from r, to r, and invoking the 
adiabatic boundary condition at r,, we have 

d2F 
SE-. %+Jd, 
dx’ &r,(l-#) 

(20) 

where F$ is the average temperature of the solid region 
defined by equation (10) and qw the local heat flux 
from the fluid region through the inner wall of the 
tube into the solid region. Here qw is positive when 
the heat flux is in the positive r-direction. In general, 
both ii, and qw are functions of x. Since the outer wall 
of the tube is considered to be adiabatic, the only 
cause of heat how is the heat source and heat sink at 
the two ends of the tube. Thus, when the aspect ratio 
of the tube is large, the heat flux through the inner 
wall must be small. As an approximation, let us 
assume that qw has a small constant value. Denoting 
the right-hand side of equation (20) by -E, i.e. 

we may rewrite equation (20) as 

d’i’, 

dx2 
E. (22) 

Since in the middle portion of the tube, aT@x is 
independent of r, we may further assume 

a2T d2F 
S*Y= -_E. 
a2 dx’ (23) 

Substituting equation (23) into equation (19) yields 

ia arr, 
-- 57 =& r i% ( ) 

Integrating equation (24) twice with respect to r and 
invoking the boundary conditions 

and 

we have where 

T,(x,r) = T,(x)+ g(&)[v --ln(k]]. 

Since the heat flux at the wall qw is assumed to be 
constant, the well-know solution 1141 for laminar 
flow in a tube with fully developed temperature profile 
and constant heat Flux at the wall applies to the fluid 
region inside the tube, i.e. 

T&r) = Wx)+F[($-4($+3]. 

(26) 

Substituting equations (25) and (26f into equations 
(9) and (10) and then substituting the resultant i;F and 
Fs into equation (12), we find 

where 

(27) 

Q, = 4t$-3-rp2-lni$2. (28) 

The dimensionless thermal dispersion coefficient And 
can be obtained from equations (18), (27) and (26) 

11 fdT -.I 
-- 

I > 
-! 

Pfcfcp+Ps41-4) 8 \ dx ’ (29) 

Based on an energy balance in the fluid region, the 
heat flux across the wall can be related to the gradient 
of the average fluid temperature 

(30) 

It is now obvious that the assumptions of equation 
(14) also result in 

dT dTr dT, _=__=--- 
dx dx dx ’ (31) 

Substitutinrr equations (30) and (31) into equation 
(29) then y&lds 

(32) 

fizz. f 
(25) It is encouraging to note that neither the solid-fluid 
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heat flux q,,, nor the temperature gradient appears in 
equation (32). Also, the thermal dispersion is now 
seen to be defined only by the physical properties of 
the solid and fluid phases, the porosity of the 
tube/fluid system and the flow rate, expressed in a 
dimensionless fashion as the Peclet number. 

3.2. Laminar jlow with traveling .front temperature 
distribution 

Since in equations (2) and (11) there exist both 
diffusion and convection terms, a sharp temperature 
front in the flowing fluid would be expected to spread 
out in the flow direction while moving downstream. 
It is obvious that the solution of the problem can be 
simplified with a moving coordinate system at the 

average velocity of the temperature front. The velocity 
of the moving front, v,, is defined as 

Upon transformation from the x-t plane to the x ,-t 1 
plane, where X, = x- v,t and t , = t, equation (I 1) 
becomes 

It is well known that equation (34) has a similarity 
solution of error function form when subjected to the 

boundary conditions of two constant temperatures, 
at -cc and at +co, and the initial condition of a 
step function. The initial step function will spread out 
symmetrically with respect to the origin of the moving 
coordinate. Therefore, v, can be referred to as the 
characteristic velocity of the moving front. It is inter- 

esting to note that this characteristic velocity r, is 
identical to the velocities for the fronts of the average 

solid temperature and the average fluid phase tem- 
perature, as obtained by Zanotti and Carbonell [12] 
using the moment method for a pulse increase in tem- 

perature. 
Transforming equations (2) and (3) to the moving 

coordinate system and, following a similar procedure 

used in deriving equation (18), we find that the dimen- 
sionless thermal dispersion coefficient And becomes 

For long times, the temperature front will have a 
certain width in x instead of a sharp front. If the width 
is large enough in comparison with the radius of the 
tube, we may employ the approximation that the fluid 

temperature is linear with respect to X, We may also 
assume that the heat flux across the inner wall of the 
tube is a small constant value in the front region, 
In contrast to the assumption of a negligible axial 
derivative of the liquid temperature deviation used by 
Zanotti and Carbonell [13], we assume that all axial 

temperature derivatives are equal. Following the same 
procedure as in the steady-state case, we may find the 
temperature distributions in both the solid and fluid 
regions. Substituting these temperature profiles into 

equation (35), we finally obtain the following 
expression for i,, : 

(36) 

If the porosity is unity, the wall of the tube does not 
play a role in the heat transfer process and equation 
(36) gives the well-known Taylor-Aris expression [15] 
for the species dispersion coefficient, as expected. 

It is of note that in both equations (32) and (36), 
the dimensionless dispersion coefficient IL,, is never 
less than one. In these two equations, the parameter 
@ defined by equation (28) is always positive if the 
porosity varies from zero to one. Therefore, the flow 
in a porous medium always increases the dispersive 

heat transfer when such flow is parallel to the heat flux 
direction under either co-current or counter-current 
conditions. 

4. EFFECTS OF HETEROGENEITIES 

Heterogeneity is an inherent feature of all real 
porous media. From a conceptual standpoint, it is 
obvious that preferential fluid flow through a larger 
diameter ‘tube’ will enhance thermal dispersion in 

heterogeneous media due to the mechanisms identified 
in previous sections. Thus, an investigation of the 
effects of heterogeneities on thermal dispersion in 

porous media is particularly valuable. 
A bundle of tubes, with f’(rw) being the distribution 

function of the radii of the inner walls of the tubes, 

is employed as the simplest model of heterogeneous 
porous media. Assuming that each tube in the bundle 
has the same ratio of the radius of the outer wall to 
that of the inner wall, all tubes in the bundle, as 
well as the whole bundle, have the same porosity, i.e. 

4, = (r,,ir,J2 = &, where the subscript i indicates 
quantities of the ith tube in the bundle, and subscript 
b indicates those quantities for the whole bundle. If 
both the liquid phase and the solid phase have uniform 
properties, &/a, and p are constant throughout the 
bundle. Assume further that the whole bundle is 
sufficiently long so that each tube in the bundle has a 
large aspect ratio and that the temperature gradients 
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in the axial direction of each tube are identical to that 
of the whole bundle. Normally the thermal con- 
ductivity of the solid phase is much higher than that 
of the liquid phase so that the temperature varies 
almost linearly along the entire outer wall of the tube, 
including the regions next to the two ends. Therefore, 
it is reasonable to assume that at each cross-sectional 
area, the temperatures at the outer walls of the tubes 
are identical so that there is no heat exchange taking 
place between tubes. An adiabatic boundary con- 
dition can then be imposed at the outer wall of each 
tube. Thus, each tube in the bundle is under exactly 
the same situation as the previous single tube model 
and equations (32) and (36) apply. It is convenient to 
write both equations (32) and (36) in the form of 

(37) 

where function G is defined either by equation (32) or 
(36), depending on the situation. In both cases G is 
only a function of porosity, the conductivity ratio of 
the two phases, and the specific heats of the two phases 
so that it is a constant for the bundle, i.e. Gj = Gb. 

The dispersive heat flux of the ith tube is 

qi = -Idig 

where T, is the average temperature over a cross- 
sectional area of the ith tube and adi the thermal 
dispersion coefficient of the ith tube, as given by equa- 
tion (32) or (36). By definition, the dispersive heat 
flux of the whole bundle is 

qb = -ad,2 
where Tb is the average temperature of the bundle over 
any whole cross-sectional area and A,,, the thermal 
dispersion coefficient for the whole bundle. Since the 
temperature gradients in the x-direction are constant 

The heat flux of the bundle must equal the total heat 
flow divided by the total area of the bundle, thus 

%Si 
qlJ = C& (41) 

where Si is the total cross-sectional area of the ith 
tube. 

Substituting equations (38) and (39) into equation 
(41) we obtain 

(42) 

Assuming Poiseuille flow in tubes and that the press- 
ure gradients are constant, for the ith tube we have 

The overall Darcy velocity of the whole bundle can 
be expressed as 

and the Peclet number, P&t,, based on the Darcy vel- 
ocity of the whole bundle, udbr and the average radius 
of the bundle, EW, is then 

rkf(rd dr, 
Pedb = 

s 

~-. m (45) 

$#kv) drw o 

Since the porosity and the thermai conductivities of 
the fluid phase and the solid phase of all the tubes in 
the bundle are identical, the static thermal con- 
ductivity of the bundle must be identical to that of 
any one of the tubes. Denoting the static thermal 
conductivity of a single tube and of the whole bundle 
as &,, dividing both sides of equation (42) by &, and 
converting from a discrete form to a continuous form, 
we have 

where &,db is the dimensionless thermal dispersion 
coefficient of the whole bundle. By substituting equa- 
tions (36) and (45) into equation (46), the following 
is obtained : 

(47) 

where the coefficient < is defined by 

(48) 

Note that 5 is only a function of the tube size dis- 
tribution function f(rW) of the bundle. Comparison 
of equation (47) with equation (37) shows that the 
dimensionless thermal dispersion coefficient of a bun- 
dle equals that of a tube of average radius with the 
second term multiplied by <. Therefore, as long as 
the radius distribution function, f(r), of a bundle is 
known, the dispersion coefficient for the bundle can 
be evaluated from equations (47) and (48). 

Equation (47) shows that the effect of hetero- 
geneities on the thermal dispersion coefficient depends 
on the function i_. A homogeneous medium can be 
viewed as a particular case of a heterogeneous medium 
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with radius distribution function being defined by a 
Dirac delta function, i.e. .f(r,) = 6(r,,). This uniform 
distribution gives < = I for a homogeneous medium 
as it should. The values of < corresponding to some 

well-known distribution functions are given in Table 
1. By the wide range of t values illustrated in Table 
I, it is clear that heterogeneities can be a dominant 

factor in dispersive heat transfer. 
To gain a better understanding of the behavior ol 

the function t, we examine a binary system consisting 

of only two sizes of tubes with radii being r, and Y?. 

The distribution function of the system is 

,f(r) = &(r,)+(I -u)&r,) 1.49) 

where a is the fraction of tubes of r,, and 0 d a < 1. 
Denoting the ratio r2/rr by n and substituting equa- 
tion (49) into equation (48). the function < of the 
binary system becomes 

From equation (50) we see that when a = 0, cl = I. 
or n = 1. 5 = 1 which is consistent with the case of 

homogeneous media. Equation (50) is illustrated in 
Fig. 2 for several values of n > 1. In Fig. 2, 5 increases 

with the ratio of tube radii, n, until it reaches a 
maximum value, then decreases rapidly to a value of 
one at a = 1. The larger the value ofn, the higher the 

value of r. Thus thermal dispersion will be much more 
pronounced if there are a few larger channels in a 
uniform medium with relatively small pores, than if 
no channels are present. The other interesting feature 

of the binary system is that when the percentage of 
the large tubes is very small, i.e. when n + 1, ( changes 
dramatica!ly to a value of 1.0. Therefore. thermal 

dispersion coefficients are somewhat unpredictable in 
a real porous medium because it is very difficult to 

evaluate the exact percentage and sizes of the larger 

pores. 

5. COMPARISON OF THEORY WITH 

EXPERIMENTAL RESULTS 

The predictions from equations (32) and (36) may 
be compared with published data where available. 
Inevitably, the errors in such data stemming from 

the assumptions made in data reduction and other 
uncertainties such as uneven packing, natural cracks. 
etc., result in low accuracy of the thermal dispersion 
coefficients. Therefore, we can expect qualitative com- 
parison rather than precise matches between the 
theoretical results and the experimental data. For pur- 
poses of comparison, the Peclet number in equations 
(32) and (36), which is based on the radius of the tube, 
is converted to the Peclet number based on particle 
diameter for the same specific surface area. The spec- 
ific surface area of a packed bed can be expressed in 
terms of the mean particle diameter and the porosity 
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For the tube model 

u, = 
I’, 

Therefore, the particle diameter can be related to the 
radius of the tube as follows : 

Figures 336 show the results obtained by Yagi ef ul. 

( 1960) [ 11, Gunn and De Souza (1974) [6] and Green rf 

NI. (1964) [5] from various transient flow experiments. 
Figure 7 shows the most recent results obtained by 

Levee and Carbonell(l985) [7] from their experiments 
of the transient process with specially designed tem- 
perature probes. The solid lines on Figs, 3 7 are the 
predictions from use of equation (36) whereas the 
dashed lines in Figs. 336 are the predictions from 

Zanotti and Carbonell’s model [ 131. The dashed lines 
in Fig. 7 are from Levee and Carbonell’s theory [7. 
161. In most cases, the experimental data are rather 

scattered. However, the predictions based on equation 
(36) are generally in good agreement with these data 
in the region of Peclet number up to 100, except in 

Fig. 6 where the experimental data are higher than the 
calculated values. When the Peclet number exceeds 

100, the predictions from equation (36) tend to be 
higher than experimental results, presumably because 
of the change in flow regime. In the transitional and 
turbulent regimes of higher Reynolds number flows. 
the velocity profile would not be parabolic and down- 
stream recirculation or the turbulence of the fluid may 
provide an increased cross-stream transport. which 
would decrease the dispersive mechanisms included 
in this analysis. Thus, the linear dependency of the 
thermal dispersion coefficient on the Peclet number 
observed at high flow rates is not surprising. 

Results of steady-state experiments conducted by 
Kunii and Smith (1961) [2] are shown on Fig. 8 where 
experimental data are cast into dimensionless con- 
ductivity vs Peclet number. For purposes of compari- 
son, a least square regression method was applied to 
the experimental data to obtain a best-fit correlation 
between conductivities and Peclct number. This cor- 
relation was extrapolated to zero Peclet number to 
determine the static conductivity which is, in turn, 
used to normalize the experimental data as plotted on 
Fig. 8. Since the Peclet numbers in Fig. 8 are very 
low. the dominant part of the coefficient is the static 
conductivity. The contribution of the fluid flow to the 

coefficient is very small, as supported by the fact that 
the data of dimensionless conductivity fall in a narrow 
range around one. The solid line in Fig. 8 shows 
the dimensionless conductivity predicted by equation 
(32). The experimental data appear to increase with 
respect to the Peclet number at a rate somewhat higher 
than those predicted by equation (32). However. this 



Thermal dispersion in thick-wailed tubes as a model of porous media 2723 

0 0 

A VI 
i L 

u 

a 
-ii 

b 

a 0 

A VI 
L. 1. 

6 

X 
c! ‘9 1 
-b-f 

-!99 
0-m 

T-4 0 

(1) 3 

0 0 

A V/ 
L Ir. 



2724 Z-G. YIJAN et al. 

FIG. 2. Correlations between heterogeneity coefficient 5 and 
fraction of tubes with smaller radius r, in a binary bundle. 

FIG. 5. Dimensionless dispersion coefficient vs Peclet number 
for transient condition of air- lead system. 

Air- Steel 

Yaqt,etol.(l960) 

.O dp = 4.6 mm 
Gunn 8 DeSouza (1974) 

Odp=3.16mm 
v dp = 6.32mm 

102 I03 IO‘ I 

FIG. 3. Dimensionless dispersion coefficient vs Peclet number FIG. 6. Dimensionless dispersion coeffkient vs Peclet number 
for transient condition of air-steel system. for transient condition of water--glass system. 
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Gunn a rJas0uzo (1974) 

FIG. 4. Dimensionless dispersion coefficient vs Peclet number 
for transient condition of air-glass system. 

discrepancy may be due to experimental errors, the 
simplified model used to reduce the data, and/or the 
heterogeneity effects. 

6. CONCLUSIONS 

Several conclusions can be drawn from the theor- 
etical analysis presented herein : 

(1) The thermal dispersion coefficient for a porous 
medium with a flowing fluid depends on the velocity 

t Air- Lead 

8.C 

h nd 

IO 

Water- Gloss 
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G ireen et al. (1960) 
A dp = 0.46mm 

m d,,’ I.1 mm 
0 dp = 3.0mm 

11, I 
I.0 IO IOL 

pe 

Water-Urea Formaldelyde 

x nd 

102 

Levee & Corbomll (19851 
0 + =0.39 dp*0.!35cm 

, 9 LO.398 dp.0.55Crn 
a + -0.396 dp=0.25 

1.0 
IO IO I02 IO3 IO4 

FIG. 7. Dimensionless dispersion coefficient vs Peclet number 
for transient condition. Temperatures of solid phase and 
liquid phase were measured separately with special probes. 

field and the temperature field of the system. For a 
specific flow regime and temperature field, there exists 
a corresponding relationship between the thermal dis- 
persion coefficient and the Peclet number. Other than 
integral forms such as equation (13), there is no gen- 
eral definition of a thermal dispersion coefficient for 
an arbitrary thermal field. 

(2) In the laminar flow regime, for which the Peclet 
number is small (< loo), the dispersion coefficient 
equals the static thermal conductivity plus a term due 
to the contribution of dispersive flow. This latter term 
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pe 
FIG. 8. Dimensionless dispersion coefficient vs Peclet number 
for steady-state temperature distribution in a range of low 

Peclet numbers. 

is proportional to the Peclet number squared. The 
proportionality constant is a function of porosity, the 

ratio of thermal conductivities of two phases, the ratio 
of the specific heats and densities of the two phases, 
and the temperature field pattern. 

(3) Thermal dispersion resulting from hetero- 

geneities varies over a wide range. Under certain 
circumstances, heterogeneities are predicted to cause 
several orders of magnitude increase in the thermal 
dispersion coefficient. 
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DISPERSION THERMIQUE DANS DES TUBES A PAR01 EPAISSE COMME MODELE 
DES MILIEUX POREUX 

R&urn&--On prisente une Etude thborique de la dispersion thermique dans les milieux poreux. La con- 
tribution des distributions du niveau de vitesse $ la dispersion est consid&e dans une analyse du transport 
thermique dans un tube B paroi tpaisse contenant un fluide en Bcoulement. On montre que les cas d’un 
gradient de tempkrature appliq& en permanence et d’une onde progressive de temfirature produisent des 
dispersions thermique diffbrentes. Dans les deux cas, le coefficient de dispersion est dkfini par la conductivitk 
thermique statique plus un terme dd $ l%coulement dispersif. Ce terme est proportionnel au cam? du 
nombre de P&let. Le coefficient de proportionalitt est fonction de la porosit6, des propribtbs thermiques 
du fluide et du solide, et du champ de tempbrature. En considtrant une grappe de tubes de diffkrents 
diamktres, la contribution des h&rog&n&tCs est &al&e. Des variations dans le diamhtre des pores causent 
des accroissements de dispersion de plusieurs ordre de grandeur. Des comparaisons satisfaisantes du modtle 

de dispersion et des don&es exp&mentales sont prksenttes. 



TWERMISCHE DISPERSION IN DICKWANDIGEN ROHREN ALS MODELL EINES 
PORdSEN MEDIUMS 

Zusammenfassung-Es wird eine theoretische Untersuchung der thermischen Dispersion in porosen Medien 
vorgestellt. Der EinfluR der G~schw~ndigkejts~,erteilung in der Porenehene auf die Dispersion wird in eine 
Analyse des W~rmetransports in einem dickwandigen durchstr~mien Rohr eingebracht. Es zeigt sich. da8 
die thermische Dispersionshinge bei den Fallen eines station& aufgepragten Temperatur~radienten und 
einer wdndernden Temperaturwelle unterschiedlich sind. In heiden Fallen wird der Dispersionskoeffizient 
als Summe aus der statischen Warmeleitfahigkeit und einem Term aufgrund der dispersiven Strijmung 
definiert. Der Dispersionsterm ist dem Quadrat der Peclet-Zahl proportional. Es zeigt sich. da13 der 
Proportionalitatskoeffizient von der Porositat, van den Stoffeigenschaften des Fluids und dcs Feststoffs 
und vom Temperaturfeld ahhlngt. Durch die Betrachtung eines Biindels von Rohren mit unterschiedlichem 
Radius wird der Einflu8 von Heterogenitaten auf die thermische Dispersion ermittelt. Es zeigt sich, da8 
~nderun~en des Porendur~hnlessers eine Zunahme der Dispersion urn Gr~~enordnungen hewirken. 
Fin Vergleich der Ergebnisse aufgrund des Dispersionsmodells mit vcrSffentlichten Versuchsdaten 7eigt 

hefriedigende Ubereinstimmung 

TEI’IJIOBAIi J@%CHEPCMII 3 TOJICTOCTEHHbIX TPYEAX, ~CHO~b3YEMbIX B 
KALIECTBE MOCHA HOP~~O~ CPEabI 

hmoTai&n#F-TeopeTsrecK~ r&wIenyeTcn T~IIJIOB~X ~crrepc~a B nopwcTblx cpeaax. B aHaJni3eTennone- 
peuoca B TOJlCTOCTeHHOi TpyGe, conepmqeii ~OTOK XWKOCTW, BblRBneH BKJIan pacnpenenemifi CKO- 

pocrn tra ypomre nop B .wcnepcm. IIoKa3aH0, ~TO B cnyvarx craqeoaapaoro TeMnepaTypHoro 

rpanueeTa u~r~eiiTeMnepaTypHoii~on~m Bo3HWKaeTTennOBas nmrepcar pa3sbIx BBLIOB. B 06oux 
cJryYa5xx rc03#sirmei5r mrcnepcmi onpefienxercr craTmiecicoii rennonpoeon~oc~mo II cnaraeMbiM, ona- 
CMBalOUBMA~~~~oHHoefeseHae. 3~0 cnaraeMoe ~~~p~oH~bfl0 K~paTy~nc~a netme. nova- 

3aH0, YTO KOL%&$UUHeHT npO~O~~~OH~bH0~~ IBJflleTCZ4 @ymmefi RO&303HOCTU, Tt%UIOBblX CBOiiCTB 

mmcocTfi s4 ~~epnoro Tena,a TaK= -reMnepaTypHoro nonr.Na npnhfepe nywca Tpy6 c pa3nBwbiwi 

panaycaMa 0uewiBaeTcB wsisume HeozlHoponHocrefi HaTennoByw nHcnepcH~.noRa3aHo,970 H3h4eHe- 

Hall J,HaMeTpOB UOp BbIlMBWT yBe,lWIeHW, JWXIepCHH Ha IlOpXnKH. nOJIy'IeH0 yJlOBJ,eTBOpHTe,IbHOe 

COrJIaCXe Memy HaCTOBWefi MOAeJIbH) JSV.Xle~HA B ony6JI~KOBaHHbIMH 3KCIIepUMeHTaJIbHbIMII 

,iXWHbiMU. 


