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Abstract—A theoretical study of thermal dispersion in porous media is presented. The contribution of
pore level velocity distributions on dispersion is captured in an analysis of thermal transport in a thick-
walled tube containing a flowing fluid. It is shown that the cases of an applied steady-state temperature
gradient and a traveling temperature wave produce different thermal dispersivities. In both cases, the
dispersion coefficient is defined by the static thermal conductivity plus a term due to dispersive flow. The
dispersive term is proportional to the Peclet number squared. The proportionality coefficient is shown to
be a function of porosity, fluid and solid thermal properties, and the temperature field. Through con-
sideration of a bundle of tubes of various radii, the contribution of heterogeneities on thermal dispersion
is evaluated. Variations of pore diameters are shown to cause orders of magnitude increases in dispersion.
Satisfactory comparisons of the dispersion model with published experimental data are presented.

1. INTRODUCTION

KNOWLEDGE of the thermal dispersion coefficients for
porous media saturated with flowing fluids is of fun-
damental importance in a wide variety of engineering
applications such as thermal oil recovery, geothermal
energy recovery, heat transfer in packed beds, etc.
The phenomenon of transport in porous media is
extremely complicated due to the complex pore
geometries. A common approach to problems regard-
ing heat or mass transfer in porous media is to treat
the medium as a continuum where the domain of
interest is substantially greater than the characteristic
pore size and grain size of the medium. Application
of the principle of conservation of energy to a control
volume of the pseudo-continuum yields the following
energy equation in which radiation and viscous dis-
sipation effects are negligible:

V- (4aVT) =V (preevy T)

oT
= o +pe(l-$)5, (1)

where A, is the thermal dispersion coefficient, or effec-
tive thermal conductivity, and v4 the Darcy velocity.
The apparent advantage of this approach is its sim-
plicity in that there is no need to distinguish the fluid
phase from the solid phase in the medium. But what
accompanies this simplification are the difficulties in
defining 44 and 7. The role of 4, in equation (1) is the
same as that of thermal conductivity in the energy
equation of a true continuum. Strictly speaking, Fou-
rier’s law does not apply to the presumed continua of
porous media. The thermal conductivity of a fluid or
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a solid defined by Fourier’s law is an inherent physical
property of the material independent of its velocity of
motion. However, the thermal dispersion coefficient
Aq of & porous medium saturated with fluids behaves
in quite a different manner, in that it depends on the
velocities of the fluids within it. For this reason, A, is
better named a thermal dispersion coefficient than
effective thermal conductivity.

A considerable amount of effort has been made to
correlate thermal dispersion coefficients with other
properties of the porous medium. In the early 1960s,
Kunii and Smith, along with other researchers [1—
4], conducted extensive experimental investigations of
the thermal dispersion coefficient for a one-dimen-
sional porous rock and packed beds of unconsolidated
sands or glass beads under steady-state fluid flow con-
ditions. In those experiments, a heat source and a heat
sink were placed at either end of the bed. Fluids were
flowed through the medium in the opposite direction
to the heat flux. Similar experiments were also per-
formed on sandstones. Kunii and Smith found that
the thermal dispersion coefficient increased sig-
nificantly with mass velocity of the fluids. Other inter-
esting work by Willhite er al. [3] showed that when
the fluid flowed in the direction perpendicular to the
heat flux, there was no effect of the flow velocity on
the thermal diffusivities over the range of modified
Reynolds number from 0 to 6.6.

In addition to the steady-state experiments reported
above, a number of experimental investigations under
transient conditions have been reported [5-7]. In the
early 1960s Green et al. [5] carried out experiments
observing the response of packed beds to a step change
in temperature of the fluid flowing through them. In
similar experiments, Levec and Carbonell [7] mea-
sured the fluid temperature and solid temperature sep-
arately with a series of specially designed probes. The
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NOMENCLATURE
a fraction of tubes with r, in the binary T. average temperature of the solid phase
bundle T, temperature along the inner wall of the
a, specific surface area tube
¢ specific heat of the medium as a t variable of time
continuum v average interstitial velocity of the fluid
¢r specific heat of the fluid phase phase
¢, specific heat of the solid phase v(r)  dimensionless fluid velocity
f{r density distribution function of tube vy, ¥¢  Darcy velocity
radius of a bundle ve(r) actual velocity in the fluid region
G function defined in equation (37) z coordinate in the axial direction.
n ratio of radii, r,/r,
P pressure
P.;  Peclet number based on Darcy velocity,  Greek symbols
20470 o, o, thermal diffusivity of the fluid or solid
IR total heat flux through a bundle phase
4 heat flux through the ith capillary tube I dimensionless number, see equation (32)
G heat flux through the inner wall of the b> small quantity defined by equation (21)
tube Ag thermal dispersion coefficient
coordinate in the radial direction A effective thermal conductivity
Ty radius of the outer wall of the tube model Ar thermal conductivity of the fluid phase
e radius of the inner wall of the tube model 4wy dimensionless thermal dispersion
S cross-sectional area of a bundle coefficient
S; cross-sectional area of the ith capillary Ay thermal conductivity of the solid phase
tube & coefficient of the bundle
T temperature of the medium as a Or density of the fluid phase
continuum iR density of the solid phase

T: temperature of the fluid phase
7, temperature of the solid phase
T; average temperature of the fluid phase

¢ porosity
D function of porosity defined by equation
(28).

data obtained showed that when a temperature front
passed through the bed, the profile of the average
temperature of the fluid and that of the average tem-
perature of the solid moved at the same speed. The
temperature data for each phase was compared to a
theoretical model in which the temperature at any
point in the fluid region or solid region was decom-
posed into an average temperature and a local devi-
ation. Good agreement was obtained between the
experimental data and the theoretical model.

Other theoretical work has been presented by
Dixon and Cresswell [8, 9], Carbonell [10}, and Zan-
otti and Carbonell [11-13]. Dixon and Cresswell [8,
9], by using a two-phase continuum model with a
discretized temperature field in the radial direction
and perturbation methods, developed approximate
expressions predicting the effective axial and radial
thermal conductivities and the apparent wall heat
transfer coefficient for fluid flow through packed beds
in heated tubes. Carbonell [10] introduced the concept
of a bundle of capillary tubes of variable diameters to
explain molecular dispersion in heterogeneous porous
media. Zanotti and Carbonell [13], by using the
method of moments and volume averaging, were able
to define the thermal dispersion coefficient, expressed

in terms of heat capacities, flow rate, thermal con-
ductivities, and porosity for the case of a pulse change
in temperature. However, no theoretical model has
been reported from which the effective thermal con-
ductivities obtained are directly related to the thermal
dispersion coefficient found in equation (1).

In the present work, we start with the energy equa-
tions for the fluid region and for the solid region
for a single tube model, in order to derive a general
equation to express the thermal dispersion coefficient
in a form which applies directly to equation (1). The
general expression is then applied to two typical cases
to generate corresponding coefficients for each case.
The two cases are laminar flow with a steady-state
temperature distribution and a step-change transient
temperature distribution. The effects of hetero-
geneities on thermal dispersion are examined
through the analysis of a bundle of tubes of various
radii. Finally the theoretical expressions are compared
to the experimental data taken from the literature.

2, THERMAL DISPERSION COEFFICIENT FOR
A CYLINDRICAL TUBE

The ideal method to deal with the problems of
thermal transport in porous media is to separate the
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Fic. 1. The thick-walled tube model with fully developed
laminar flow inside and insulated condition outside.

problem into a fluid region and a solid region. Closure
of the problem is obtained with the appropriate con-
ditions at the interface of the two regions. The geo-
metric complexities of the interface of real porous
material exclude this method from practical appli-
cations. However, for cases with simple geometry,
this method does apply and gives useful and general
results.

Consider a long circular tube (Fig. 1) within which
fully developed laminar flow occurs. The outer surface
of the tube is thermally insulated. The energy equa-
tions for this tube—fluid system are

10/( 0T ik Tf 10T;
;ar( m)* BT
1 0T;
—a—rﬁ, O<r<r, (2)
and
1o (0T P 1o
ror\"or ox: w0t F<ro

At the inner wall of the tube, there are two constraints

Tf(xs Fws t) = Ts(x9 Tws t) (4)
and
aTr(X, Tws t) _ aTs(xs rwyt)
A ATy ©)

An adiabatic boundary condition is applied at the
outer wall of the tube

aTS('x’ rO’ t) —

= ©)
By symmetry, at the centerline of the tube

5} Tf(x, 0, t)

Y = 0. @)

The fully developed velocity profile for laminar flow
can be expressed as v(r) = 2V[1—(r/r,)?], where V
is the average velocity of the fluid inside the tube.
Multiplying equations (2) and (3) by 2nr, inte-
grating with respect to r from 0 to r,, and from r, to
r,, respectively, and then adding the two resultant
equations while invoking equations (4)—(7), we have
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02 _ . 8 [ 2
W[1:¢Tr+ls(l —-9T,]— prf;vd é;ﬁ v(r)Trd<é>

0 _ -
= E[Prcf%be'*Pscs(l -9T] (8)
where v(r) = 2[1 —(r/r,)?], while T, and T. are the
average temperature of fluid phase and solid phase,
respectively, defined as

f“ T, d(%)
To="r— ©
and
f "1, d07)
T = _rT—T (10)

In this particular tube model, porosity ¢ = r2/r2.

If a tube with a large aspect ratio (i.e. Lir, » 1) is
considered as a one-dimensional continuum, equation
(1) becomes

0 oT oT oT
P <}~d a) Pz = Losced + pyc (1 — )] o

(11)

where T is the average temperature obtained over a
cross-sectional area. The average temperature T is
defined as

pfcf¢Tf+pscs(1 _¢)Ts

T b tre(1—¢)

(12)

Subtracting equation (8) from equation (11), we have

o, er oT,
[ad —Aep — A1~

ox
r— " oyra( "
— PrCily —a \ v(rT; E =0.

In general, the bracketed term is a function of time.
The spatial integration of the above equation leads to
the following :

oT oT,

f aTs
hag —hb o —A(1-$)ZE

r— " enra(”
— PrCilq _a R o(NT; r_g = H(2).

Physically the term H(¢) represents the discrepancy in
the heat flux of the one- and two-equation models.
However, we require the heat flux through the two
models to be the same. Thus, we set H(#) = 0 and then
solve for the thermal dispersion coefficient 4, as
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" T -\ "o 0T 2
/:d - {)\"-J (—;‘Jd<L> +;L“\[ f“”-id(i)
o O0x \r, L. 0x \r,
1" ANITCIAS
+prcirg| T~ é o v(r)T,d , )

It can be seen that once the functions Ty(x, . 1) and
T.(x, r, 1) in equations (2) and (3) are given, we may
substitute them into equations (9), (10), (12) and (13),
and obtain A; as a function of x and ¢. Therefore,
for each particular temperature distribution satisfying
equations (2) and (3), there exists a corresponding
thermal dispersion coefficient function which can be
used in equation (11). When a set of boundary con-
ditions in the x-direction is imposed, equations (2)
and (3), subject to conditions (4)--(7), form a closed
problem which may be solved by analytical or numeri-
cal methods. The dispersion coefficient 44 can then be
obtained by use of equation (13). Equation (13) is
valid under both steady-state and transient conditions
since the transient terms of equations (2) and (3) have
not been dropped.

Equation (13) indicates that the thermal dispersion
coefficient depends not only on the physical propertics
of the fluid phase and the solid phase, but also on the
velocity field and the temperature field in these two
phases. Therefore, we should not expect to find a
single expression for 4, which applies to all flow
regimes and temperature distributions. However, for
each particular case, there should be a corresponding
solution for A,.

(13)

3. ASYMPTOTIC SOLUTIONS OF TWO CASES

Our major concern in this work is the interior region
of the porous medium. Here we assume that the pri-
mary mechanism of thermal dispersion is enhanced
pore-level convection due to the existence of an inter-
stitial velocity profile. Therefore, we proceed with a
specified pore-level velocity profile and examine vari-
ations in the overall temperature field under given
thermal boundary conditions. The flow inside the
pores is considered to be fully developed. For the
Jaminar flow regime, the velocity profile is then para-
bolic. The temperature distribution evolves from
cither the steady-state or unsteady-state condition. A
packed bed with a heat source at one end and heat sink
at the other is an example of a steady-state problem. A
number of unsteady-state problems often encountered
in real applications can be referred to as traveling
front problems in which there exists a step change in
the inlet temperature of the flowing fluid. As the fluid
passes through the medium, the temperature front
smears out along the flow direction because of the
combined effects of molecular diffusion and hydraulic
dispersion. Thus, the two typical cases of interest are :
laminar flow with steady-state temperature dis-
tribution and laminar flow with traveling-front tem-
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perature distribution. In what follows, we will derive
the asymptotic solutions for these two cases where the
aspect ratio of the tube is large.

3.1. Laminar flow with steady-state temperature
distribution

In most applications, the dimensions of the region
of interest are much larger than those of the pores or
grains of the medium so that a tube model with a large
aspect ratio can be used to simulate the medium. We
are interested in thermal dispersion in the interior
region where the end effects resulting from the
imposed conditions of uniform temperatures at both
ends are not important. Equations (2) and (3), subject
to equations (4)—(7) with the additional isothermal
conditions at two ends, were first solved by numerical
methods. The numerical solutions indicate that when
the aspect ratio of the tube is large. the temperature
distributions in the fluid and solid are linear in the x-
direction in the middle portion of the tube, i.e.

er.  or, orT
o Ys _0h (14

ox  ax  ox
Substituting equation (14) and the parabolic vel-
ocity profile into equation (13) yields

Gy = Gt (1= )7

o, 3 [ ] A\ -y > >v
Prely N é Jo B ro/ . ' (r;/

dx

[t can be seen that the first two terms on the right-
hand side of equation (15) are exactly equal to the
static effective thermal conductivity of the tube—fluid
system which can be viewed as an example of a paralicl
model of porous media. The third term of equation
(15) is the dispersive contribution of the pore level
fluid velocity distribution. Denoting the static con-
ductivity by 4., i.e.

Ao = Gt (1= )4,

and defining the Peclet number, 7,4, in the following
manner

(16)

2r U4
ed = T

Xy

(17)

the dimensionless thermal dispersion coefficient 7.
defined as 44/4., can be expressed as

Apg = |
Pk (T 1 [ rY ’
et ) Y trat &
e -Gy
T S e e = (18)
dx

The second term on the right-hand side of equation
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(18) indicates the relative increase in the thermal con-
ductance due to the fluid velocity variations.

In order to use equation (18), T;, T, and T from
equations (3) and {4) are needed under the condition
of a large aspect ratio. For steady state, equation (3)

becomes
vafen en
ror r or + ax?

Multiplying equation (19) by 2zr and then integrating
with respect to r from r, to r, and invoking the
aditabatic boundary condition at r,,, we have

_ 2.9
'%'sro(1 "'qs)

where T, is the average temperature of the solid region
defined by equation (10) and g, the local heat flux
from the fluid region through the inner wall of the
tube into the solid region. Here g, is positive when
the heat flux is in the positive r-direction. In general,
both T, and ¢,, are functions of x. Since the outer wall
of the tube is considered to be adiabatic, the only
cause of heat flow is the heat source and heat sink at
the two ends of the tube. Thus, when the aspect ratio
of the tube is large, the heat flux through the inner
wall must be small. As an approximation, let us
assume that g, has a small constant value. Denoting
the right-hand side of equation (20) by —¢, i.e.

(19)

a’T,
dx?

(20)

N @
j‘sr 0(1 "d))
we may rewrite equation (20) as
d*T,
—5 = —& (22)

dx?

Since in the middle portion of the tube, 47T,/0x is
independent of r, we may further assume
T, - a*7,
ax% ~ dx?

= —g. (23)

Substituting equation (23) into equation (19) yields

AN
rae\"or )T

Integrating equation (24) twice with respect to r and
invoking the boundary conditions

o7,
(ar),}..g:o

24

and
T,
*)”"(ar),,, = g,
we have
Ts(x,r) T ( )+q2w;to(\/¢¢>l:(r r—rw) —In <r ):l

25)
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Since the heat flux at the wall ¢,, is assumed to be
constant, the well-known solution [14] for laminar
flow in a tube with fully developed temperature profile
and constant heat flux at the wall applies to the fluid

region inside the tube, i.e.
4 2
G- ()
W rW

(26)

Tf(xa 7')

Substituting equations (25) and (26) into equations
(9) and (10) and then substituting the resultant T; and
T, into equation (12), we find

[;c¢(%) i
_ quro/8| " \3%)  41-9)
T = Tw('x)+ )'s L prf¢+ps s(lm¢)
27N
where
O =4¢—3—¢>—In¢> 28)

The dimensionless thermal dispersion coefficient 1,
can be obtained from equations (18), (27) and (26)

Pcdqw
o= 1+ ()

3p.c, @
A ¢)< ) i ‘_‘va)"' 29)
pobtpe(i—¢) 8 \dx)

Based on an energy balance in the fluid region, the
heat flux across the wall can be related to the gradient
of the average fluid temperature

Pude T,
46 dx-

Gw = — (30

It is now obvious that the assumptions of equation
(14) also result in

dr _df,_dT,

dx  dx dx

Substituting equations (30) and (31) into equation

(29) then yields
_ 32 (4
o1 (%) gf[“ ¢)+4<1~¢)(&m
M 24 8 ¢+B(1—¢) J

where

3D

(32)

— pscs
PrCr

It is encouraging to note that neither the solid—fluid
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heat flux g, nor the temperature gradient appears in
equation (32). Also, the thermal dispersion is now
seen to be defined only by the physical properties of
the solid and fluid phases, the porosity of the
tube/fluid system and the flow rate, expressed in a
dimensionless fashion as the Peclet number.

3.2. Laminar flow with traveling front temperature
distribution

Since in equations (2) and (11) there exist both
diffusion and convection terms, a sharp temperature
front in the flowing fluid would be expected to spread
out in the flow direction while moving downstream.
It is obvious that the solution of the problem can be
simplified with a moving coordinate system at the
average velocity of the temperature front. The velocity
of the moving front, v, is defined as

PeCrly

Vg = ————
prcs+ poc(1— o)

(33)

Upon transformation from the x— plane to the x,~¢,
plane, where x; = x—u.t and ¢, = ¢, equation (11)
becomes

o*T

\ oT
Adﬁ = [preed +pse(1 ’—4’)]671- (34)

It is well known that equation (34) has a similarity
solution of error function form when subjected to the
boundary conditions of two constant temperatures,
at —oo and at + oo, and the initial condition of a
step function. The initial step function will spread out
symmetrically with respect to the origin of the moving
coordinate. Therefore, v, can be referred to as the
characteristic velocity of the moving front. It is inter-
esting to note that this characteristic velocity v, is
identical to the velocities for the fronts of the average
solid temperature and the average fluid phase tem-
perature, as obtained by Zanotti and Carbonell [12]
using the moment method for a pulse increase in tem-
perature.

Transforming equations (2) and (3) to the moving
coordinate system and, following a similar procedure
used in deriving equation (18), we find that the dimen-
sionless thermal dispersion coefficient 4,4 becomes

P ed;Lr ) To { >
A= 1+ 2ie[¢+ﬁ(1—d>)]“:w 4 T“‘*(m)

ST e CHE)
0 U, 7, dx

For long times, the temperature front will have a
certain width in x instead of a sharp front. If the width
is large enough in comparison with the radius of the
tube, we may employ the approximation that the fluid

(35)
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temperature is linear with respect to x,. We may also
assume that the heat flux across the inner wall of the
tube is a small constant value in the front region,
In contrast to the assumption of a negligible axial
derivative of the liquid temperature deviation used by
Zanotti and Carbonell [13], we assume that all axial
temperature derivatives are equal. Following the same
procedure as in the steady-state case, we may find the
temperature distributions in both the solid and fluid
regions. Substituting these temperature profiles into
equation (35), we finally obtain the following
expression for A,y :

ek
0 =1 920\,
[¢2+6ﬁ¢>(1—¢)+11ﬁ2(1—¢2)+6<g)52¢J
N P Ty s LR B

(36)

If the porosity is unity, the wall of the tube does not
play a role in the heat transfer process and equation
(36) gives the well-known Taylor-Aris expression [15]
for the species dispersion coefficient, as expected.

It is of note that in both equations (32) and (36),
the dimensionless dispersion coefficient 4,4 is never
less than one. In these two equations, the paraméter
@ defined by equation (28) is always positive if the
porosity varies from zero to one. Therefore, the flow
in a porous medium always increases the dispersive
heat transfer when such flow is parallel to the heat flux
direction under either co-current or counter-current
conditions.

4. EFFECTS OF HETEROGENEITIES

Heterogeneity is an inherent feature of all real
porous media. From a conceptual standpoint, it is
obvious that preferential fluid flow through a larger
diameter ‘tube’ will enhance thermal dispersion in
heterogeneous media due to the mechanisms identified
in previous sections. Thus, an investigation of the
effects of heterogeneities on thermal dispersion in
porous media is particularly valuable.

A bundle of tubes, with f'(r,) being the distribution
function of the radii of the inner walls of the tubes,
is employed as the simplest model of heterogencous
porous media. Assuming that each tube in the bundle
has the same ratio of the radius of the outer wall to
that of the inner wall, all tubes in the bundle, as
well as the whole bundle, have the same porosity, i.c.
¢; = (ryi/re))’ = ¢, where the subscript ¢ indicates
quantities of the ith tube in the bundle, and subscript
b indicates those quantities for the whole bundle. If
both the liquid phase and the solid phase have uniform
properties, A/A; and B are constant throughout the
bundie. Assume further that the whole bundle is
sufficiently long so that each tube in the bundle has a
large aspect ratio and that the temperature gradients
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in the axial direction of each tube are identical to that
of the whole bundle. Normally the thermal con-
ductivity of the solid phase is much higher than that
of the liquid phase so that the temperature varies
almost linearly along the entire outer wall of the tube,
including the regions next to the two ends. Therefore,
it is reasonable to assume that at each cross-sectional
area, the temperatures at the outer walls of the tubes
are identical so that there is no heat exchange taking
place between tubes. An adiabatic boundary con-
dition can then be imposed at the outer wall of each
tube. Thus, each tube in the bundle is under exactly
the same situation as the previous single tube model
and equations (32) and (36) apply. It is convenient to
write both equations (32) and (36) in the form of

s =1+726(9.2.9) €0
f
where function G is defined either by equation (32) or
(36), depending on the situation. In both cases G is
only a function of porosity, the conductivity ratio of
the two phases, and the specific heats of the two phases
so that it is a constant for the bundle, i.e. G, = G,,.
The dispersive heat flux of the ith tube is

d7;
q; = _'ldid_x

(38)
where T, is the average temperature over a cross-
sectional area of the /th tube and A the thermal
dispersion coefficient of the ith tube, as given by equa-
tion (32) or (36). By definition, the dispersive heat
flux of the whole bundle is

ar,
dx

Gy = —Aa (39
where T, is the average temperature of the bundie over
any whole cross-sectional area and A4, the thermal
dispersion coefficient for the whole bundle. Since the
temperature gradients in the x-direction are constant
d7; dT,
dx  dx’
The heat flux of the bundle must equal the total heat
flow divided by the total area of the bundle, thus

_XgS;
g = TS,

40

@n

where S; is the total cross-sectional area of the ith
tube.

Substituting equations (38) and (39) into equation
(41), we obtain

E14:S;
AT

42

Agy =
Assuming Poiseuille flow in tubes and that the press-
ure gradients are constant, for the ith tube we have
rZ, dP

Vg = P ——

8 dx’ “3)
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The overall Darcy velocity of the whole bundle can
be expressed as

(44)

s 4
—L rof(r,) drw(d) dP)

Ugp = o '812 ax
rof(ra) dr,
0

and the Peclet number, P.4,, based on the Darcy vel-
ocity of the whole bundle, v4,, and the average radius
of the bundle, 7,, is then

"R ) dry

Pedb:L raf(r.) dr (qus gg) 45)
sy 4 N
j R fnydry St

i

Since the porosity and the thermal conductivities of
the fluid phase and the solid phase of all the tubes in
the bundle are identical, the static thermal con-
ductivity of the bundle must be identical to that of
any one of the tubes. Denoting the static thermal
conductivity of a single tube and of the whole bundle
as A, dividing both sides of equation (42) by 4, and
converting from a discrete form to a continuous form,
we have

J; Andrvzvf(rw) drw

R
f rof(ry) dr,,

0

(46)

where 4,4, is the dimensionless thermal dispersion
coefficient of the whole bundle. By substituting equa-
tions (36) and (45) into equation {46), the following
is obtained :

A
Angp = 14+ PLG ((15, W ﬂ)é “n
where the coefficient ¢ is defined by
[ e[ re e
0 0
= 48)

[} 2
fa [ f 1) drw]
i3

Note that £ is only a function of the tube size dis-
tribution function f(r,) of the bundle. Comparison
of equation (47) with equation (37) shows that the
dimensionless thermal dispersion coefficient of a bun-
dle equals that of a tube of average radius with the
second term multiplied by &. Therefore, as long as
the radius distribution function, f(r), of a bundle is
known, the dispersion coefficient for the bundle can
be evaluated from equations (47) and (48).

Equation (47) shows that the effect of hetero-
geneities on the thermal dispersion coefficient depends
on the function £ A homogeneous medium can be
viewed as a particular case of a heterogeneous medium
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with radius distribution function being defined by a
Dirac delta function, i.e. f(r,) = d(r,,). This uniform
distribution gives ¢ = 1 for a homogeneous medium
as it should. The values of ¢ corresponding to some
well-known distribution functions are given in Table
1. By the wide range of & values illustrated in Table
1, 1t is clear that heterogeneities can be a dominant
factor in dispersive heat transfer.

To gain a better understanding of the behavior of
the function &, we examine a binary system consisting
of only two sizes of tubes with radii being r, and r,.
The distribution function of the system is

fAr) = ad(r)+(1 —a)d(rs) (49)

where a is the fraction of tubes of v, and 0 < a < 1.
Denoting the ratio r./r, by n and substituting equa-

tion (49) into equation (48), the function ¢ of the
binary system becomes

et —an*] [a+ (1 —a)n’]
* T [+ (-] [a+ A —an*)

(50)

From equation (50) we see that when a =0, a = 1,
or n =1, & = 1 which is consistent with the case of
homogeneous media. Equation (50) is illustrated in
Fig. 2 for several values of m > 1. In Fig. 2, £ increases
with the ratio of tube radii, n, until it reaches a
maximum value, then decreases rapidly to a value of
one at a = 1. The larger the value of n, the higher the
value of ¢. Thus thermal dispersion will be much more
pronounced if there are a few larger channels in a
uniform medium with relatively small pores, than if
no channels are present. The other interesting feature
of the binary system is that when the percentage of
the large tubes is very small, i.e. when a - 1, & changes
dramatically to a value of 1.0. Therefore, thermal
dispersion coefficients are somewhat unpredictable in
a real porous medium because it is very difficult to
evaluate the exact percentage and sizes of the larger
pores.

5. COMPARISON OF THEORY WITH
EXPERIMENTAL RESULTS

The predictions from equations (32) and (36) may
be compared with published data where available.
Inevitably, the errors in such data stemming from
the assumptions made in data reduction and other
uncertainties such as uneven packing, natural cracks,
etc., result in low accuracy of the thermal dispersion
coefficients. Therefore, we can expect qualitative com-
parison rather than precise matches between the
theoretical results and the experimental data. For pur-
poses of comparison, the Peclet number in equations
(32) and (36), which is based on the radius of the tube,
is converted to the Peclet number based on particle
diameter for the same specific surface area. The spec-
ific surface area of a packed bed can be expressed in
terms of the mean particle diameter and the porosity
f13]
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Ut 2
s dp .

For the tube model

2¢

¥

a, =
Therefore, the particle diameter can be related to the
radius of the tube as follows:

1 N\
d, :3<¢ »1)”.

Figures 3—6 show the results obtained by Yagi ef a/.
(1960) [1}, Gunn and De Souza (1974) [6] and Green ef
al. (1964) [5] from various transient flow experiments.
Figure 7 shows the most recent results obtained by
Levec and Carbonell (1985) [7] from their experiments
of the transient process with specially designed tem-
perature probes. The solid lines on Figs. 3-7 are the
predictions from use of equation (36) whereas the
dashed lines in Figs. 3-6 are the predictions from
Zanotti and Carbonell’s model [13]. The dashed lines
in Fig. 7 are from Levec and Carbonell’s theory [7.
16]. In most cases, the cxperimental data are rather
scattered. However, the predictions based on equation
(36) are generally in good agreement with these data
in the region of Peclet number up to 100, except in
Fig. 6 where the experimental data are higher than the
calculated values. When the Peclet number exceeds
100, the predictions from equation (36) tend to be
higher than experimental results, presumably because
of the change in flow regime. In the transitional and
turbulent regimes of higher Reynolds number flows.
the velocity profile would not be parabolic and down-
stream recirculation or the turbulence of the fluid may
provide an increased cross-stream transport, which
would decrease the dispersive mechanisms included
in this analysis. Thus, the linear dependency of the
thermal dispersion coefficient on the Peclet number
observed at high flow rates is not surprising.

Results of steady-state experiments conducted by
Kunii and Smith (1961) [2] are shown on Fig. 8 where
experimental data are cast into dimensionless con-
ductivity vs Peclet number. For purposes of compari-
son, a least square regression method was applied to
the experimental data to obtain a best-fit correlation
between conductivities and Peclet number. This cor-
relation was extrapolated to zero Peclet number to
determine the static conductivity which is, in turn,
used to normalize the experimental data as plotted on
Fig. 8. Since the Peclet numbers in Fig. 8 are very
low, the dominant part of the coefficient is the static
conductivity. The contribution of the fluid flow to the
coefficient is very small, as supported by the fact that
the data of dimensionless conductivity fall in a narrow
range around one. The solid line in Fig. 8 shows
the dimensionless conductivity predicted by equation
(32). The experimental data appear to increase with
respect to the Peclet number at a rate somewhat higher
than those predicted by equation (32). However. this
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FiG. 2. Correlations between heterogeneity coefficient & and
fraction of tubes with smaller radius r, in a binary bundle.
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Fi1G. 3. Dimensionless dispersion coefficient vs Peclet number
for transient condition of air-steel system.
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F1G. 4. Dimensionless dispersion coefficient vs Peclet number
for transient condition of air-glass system.

discrepancy may be due to experimental errors, the
simplified model used to reduce the data, and/or the
heterogeneity effects.

6. CONCLUSIONS

Several conclusions can be drawn from the theor-
etical analysis presented herein :

(1) The thermal dispersion coefficient for a porous
medium with a flowing fluid depends on the velocity
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Fi1G. 5. Dimensionless dispersion coefficient vs Peclet number
for transient condition of air-lead system.
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F1G. 6. Dimensionless dispersion coefficient vs Peclet number
for transient condition of water--glass system.
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F1G. 7. Dimensionless dispersion coefficient vs Peclet number
for transient condition. Temperatures of solid phase and
liquid phase were measured separately with special probes.

field and the temperature field of the system. For a
specific flow regime and temperature field, there exists
a corresponding relationship between the thermal dis-
persion coefficient and the Peclet number. Other than
integral forms such as equation (13), there is no gen-
eral definition of a thermal dispersion coefficient for
an arbitrary thermal field.

(2) In the laminar flow regime, for which the Peclet
number is small (<100), the dispersion coefficient
equals the static thermal conductivity plus a term due
to the contribution of dispersive flow. This latter term
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Fi1G. 8. Dimensionless dispersion coeflicient vs Peclet number
for steady-state temperature distribution in a range of low
Peclet numbers.

is proportional to the Peclet number squared. The
proportionality constant is a function of porosity, the
ratio of thermal conductivities of two phases, the ratio
of the specific heats and densities of the two phases,
and the temperature field pattern.

(3) Thermal dispersion resulting from hetero-
geneities varies over a wide range. Under certain
circumstances, heterogeneities are predicted to cause
several orders of magnitude increase in the thermal
dispersion coeflicient.
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DISPERSION THERMIQUE DANS DES TUBES A PAROI EPAISSE COMME MODELE
DES MILIEUX POREUX

Résumé—On présente une étude théorique de la dispersion thermique dans les milieux poreux. La con-
tribution des distributions du niveau de vitesse 4 la dispersion est considérée dans une analyse du transport
thermique dans un tube 4 paroi épaisse contenant un fluide en écoulement. On montre que les cas d’un
gradient de température appliqué en permanence et d’une onde progressive de température produisent des
dispersions thermique différentes. Dans les deux cas, le coefficient de dispersion est défini par la conductivité
thermique statique plus un terme di 4 ’écoulement dispersif. Ce terme est proportionnel au carré du
nombre de Péclet. Le coefficient de proportionalité est fonction de la porosité, des propriétés thermiques
du fluide et du solide, et du champ de température. En considérant une grappe de tubes de différents
diamétres, la contribution des hétérogénéités est évaluée. Des variations dans le diamétre des pores causent
des accroissements de dispersion de plusieurs ordre de grandeur. Des comparaisons satisfaisantes du modéle
de dispersion et des données expérimentales sont présentées.
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THERMISCHE DISPERSION IN DICKWANDIGEN ROHREN ALS MODELL EINES
POROSEN MEDIUMS

Zusammenfassung— Es wird eine theoretische Untersuchung der thermischen Dispersion in pordsen Medien
vorgestellt. Der Einflu} der Geschwindigkeitsverteilung in der Porenebene auf die Dispersion wird n eine
Analyse des Wirmetransports in einem dickwandigen durchstrémten Rohr eingebracht. Es zeigt sich. daB
die thermische Dispersionslidnge bei den Fillen eines stationdr aufgeprigten Temperaturgradienten und
einer wandernden Temperaturwelle unterschiedlich sind. In beiden Fillen wird der Dispersionskoeffizient
als Summe aus der statischen Warmeleitfahigkeit und einem Term aufgrund der dispersiven Stromung
definiert. Der Dispersionsterm ist dem Quadrat der Peclet-Zahl proportional. Es zeigt sich, daB der
Proportionalititskoeffizient von der Porositit, von den Stoffeigenschaften des Fluids und des Feststofls
und vom Temperaturfeld abhéingt. Durch die Betrachtung eines Biindels von Rohren mit unterschiedlichem
Radius wird der Einflul von Heterogenitdten auf die thermische Dispersion ermittelt. Es zeigt sich, dafl
Anderungen des Porendurchmessers eine Zunahme der Dispersion um GréBenordnungen bewirken.
Ein Vergleich der Ergebnisse aufgrund des Dispersionsmodells mit verdffentlichten Versuchsdaten zeigt
befriedigende Ubereinstimmung.

TEIMJIOBAA AUCIIEPCHUA B TOJICTOCTEHHBIX TPYBAX, UCTIOJIL3VEMbBIX B
KAUYECTBE MOJIEJIM TOPHUCTOM CPEABI

Amsoraims—TeopeTHYECKH HCCIEAYETCS TEILTOBAY JUCIEPCHS B HOPHCTHIX cpefax. B ananuae rensone-
peHoca B TONCTOCTEHHOH Tpybe, comepkalliell OTOK XHUAKOCTH, BHISABJICH BKJIAX PACHPEHESCHHAR CKO-
POCTH HAa YpoBHE mOp B aMcniepcwio. I1OKasaHo, 4TO B CiyYasX CTallMOHAPHOTO TEMOEPATYPHOTO
rpagMeRta M Geryinelf TeMnepaTypHOil BOJHE BO3HHKAET TEIUIOBAN JUCHEPCH Pa3HBIX BRAOB. B oGoux
ciydasx KoxpOHUBCHT TUCHEPCHH ONIPEACHACTCH CTATHYECKOM TENNIONPOBOAHOCTEIO H CIAIAEMBIM, OMH-
CHLIBAIOLIHM AHCHEPCHOHHOE TEHeHHAE. 3TO CAaraeMoe NPONOPIHOHAIBHO KBaapaTy ucna [Texne. Toka-
3380, 4T KO3QPHUMEHT NPONOPLUHOHANLHOCTH dpiisercd (yHKXIMeHd HOPO3HOCTH, TEIUIOBLIX CBOMCTB
KHIKOCTH ¥ TBEPAOTC Tela, a Taxkxke Temnepatypaoro mois. Ha npumepe nyuxa 1pyS ¢ pasimusbivy
paaHycaMH OIICHHBACTCH BJIMAHHE HCOTHOPOJHOCTEH Ha TEIIOBYH aucniepenio. [Toxa3aHo, YTo U3MeHe-
HAA [BaMETPOB MOP BHIILIBAIOT YBEIHYCHHs JucnepcHs Ha mopaaxy. ITonyweno ymosnereoputesnsnoe
COTTACHE MeXIy HACTOMMEeH MOIENbIO ANCHEPCHM M ONYO/AMKOBAHHEIMM  3KCIEPHMEHTAJBHBIMH
JIAHHBIMH.



